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Abstract

This study is aimed at development and application of a new 3D wave propagation and

modeling method for regional waves in heterogeneous crustal waveguides using one-way wave

approximation. The great advantages of one-way propagation methods are the fast speed of

computation, often by several orders of magnitude faster than the full-wave finite-difference

and finite-element methods, and the huge savings in internal memory. As the first step,

we solve the 2D SH-wave problem. A half-space GSP (Generalized Screen Propagator) is

formulated for the SH half space problem. Two versions of the half-space GSP are derived:

the wide-angle pseudo-screen and the phase-screen. The treatment of the Moho discontinuity

is also discussed. Comparisons with a wavenumber integration method for flat crustal models

and a finite-difference algorithm for heterogeneous models show excellent agreement. For a

model with propagation distance of 250 kin, dominant frequency at 0.5 Hz, the GSP method

is about 300 times faster than the finite-difference method with a similar accuracy. These

comparisons demonstrate the accuracy and efficiency of the method. We apply our method

to simulating regional wave propagation in different types of complex crustal waveguides

including those with small-scale random heterogeneities and random rough interfaces of

sedimentary layers. Synthetic seismograms and snapshots are shown to facilitate the study

of path effects of Lg waves. Slowness domain analysis is especially useful in investigating

energy transfer in crustal waveguides and for determining which part of the energy can be

trapped in the waveguide. The influence of crustal heterogeneities and rough interfaces on

Lg amplitude attenuation and Lg coda formation are studied. It is found that small scale

heterogeneities and rough interfaces can scatter the Lg waves out of the guided modes causing

leakage into the mantle. The leakage loss due to scattering can be an important factor for

Lg attenuation and blockage.



1 Introduction

The study of path effects of complex structures and heterogeneities on the excitation and

propagation of regional phases in different areas remains critical for many seismological prob-

lems, such as the study of crustal structures and the discrimination and yield estimation for

low-yield nuclear test monitoring. An ideal numerical method for investigating regional wave

propagation should have the capabilities to deal with crustal models that include horizontal

and vertical variations with scales from geological boundaries to small scatterers, including

random heterogeneities, as well as handling 3D Q structures. For the purpose of monitoring

the CTBT (Comprehensive Test Ban Treaty) at regional distances, simulation algorithms

are desirable for generating synthetic waveforms for high frequencies up to 25 Hz at distance

greater than 1000 km.

Substantial efforts have been made in modeling regional wave propagation. Methods

based on layered earth models, such as the reflectivity and mode summation methods (e.g.

Bouchon et al., 1985, Kennett, 1989, 1990; Maupin, 1989; Baumgardt, 1990; Campillo,

1990; Campillo and Paul, 1992; Campillo et al., 1993; Gibson et al., 1994) have very high

efficiency and can be applied to relatively high frequencies, but they can be used only for

very simplified cases with layered or smoothly varying layered models, and lack the capability

to simulate more realistic crustal waveguides. Modeling techniques that can treat' realistic

3D heterogeneous media rather than smoothly varying layered media are needed to test and

study many observations and hypotheses. Sudden changes of crustal thickness, strong lateral

variations and irregular 3D heterogeneities are among the problems requiring new modeling

methods. As pointed out by Campillo et al. (1993), actual Lg amplitudes were reduced more

than 10 times for paths passing through an anomalous zone on the east side of the Alpine

range, while the modeling results using existing methods (including the effect of known

large-scale lateral structural variation) only account for 20 - 30 % of the amplitude reduction.

Other mechanisms such as the scattering and attenuation by small-scale heterogeneities must

be taken into account.

Finite-difference methods (e.g., Xie and Lay, 1994; Goldstein et al., 1996; Jih 1996) and
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pseudo-spectral methods (e.g., Kosloff et al., 1990; Orrey et al, 1996; Schatzman, 1996) are

very flexible. Theoretically they can deal with arbitrarily heterogeneous media. However, the

capability of the present day computers usually restricts them to short propagation ranges

and relatively low frequencies, which prevents them from being applied to more realistic

models.

Recently, the generalized screen method has been introduced into seismic wave simu-

lations. The generalized screen method is based on the one-way wave equation and the

one-return approximation. The one-way wave propagator GSP (Generalized Screen Propa-

gator) neglects backscattered waves, but correctly handles all the forward multiple-scattering

effects, e.g., focusing/defocusing, diffraction, interference, and conversion between differ-

ent wave types. The one-return approximation is also called the de Wolf approximation

(De Wolf, 1971, 1985), which neglects the reverberation between screens and can simulate

multiple-forescattering-single-backscattering (MFSB). Significant progress has been made on

the development of an Elastic Complex Screen (ECS) method for modeling elastic wave prop-

agation and scattering in arbitrarily complicated structures (Wu, 1994, 1996; Xie and Wu,

1995, 1996). The method is two to three orders of magnitude faster than the elastic finite-

difference method for medium size 3D problem. The screen method has been successfully

used in forward modeling (Wu, 1994; Xie and Wu 1995, 1996; Wu and Huang, 1995) and

as backpropagators for seismic wave imaging/migration in both acoustic and elastic media

(e.g. Wu and Xie 1994; Huang and Wu 1996). In the crustal waveguide environment, major

wave energy is carried by forward propagating waves, including forward scattered waves, and

therefore the neglect of backscattered waves in the propagation will not change the main fea-

tures of regional waves in most cases. By neglecting backscattering in the theory, the method

becomes a forward marching algorithm in which the next step of propagation depends only

on the present values of the wavefield in a transverse cross-section and the heterogeneities

between the two cross-sections. The saving of computing time and storage is enormous and

makes it a viable method for large 3D elastic wave propagation problems.

As the first step, Wu, Jin and Xie (1997) introduced the GSP method to simulate and

investigate SH Lg-wave propagation. In this report, we will discuss many applications of this
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method to complicated crustal waveguide structures. In section 2 we first give the wide-angle

pseudo-screen formulas for one-way SH-waves in a half space. Then a phase-screen algorithm

is obtained under the small-angle forward scattering approximation. The treatment of the

Moho discontinuity is also discussed. In section 3, we compare the simulation results of the

method with those from wavenumber integration and finite-difference methods. For a flat

crustal model, for which the wavenumber integration (WI) method (reflectivity method) is

considered as accurate, our result shows excellent agreement with the WI method. For a het-

erogeneous crustal model with propagation distance of 250 km and dominant frequency of 0.5

Hz, the GSP method is about 300 times faster than the finite-difference method with a sim-

ilar accuracy. These comparisons demonstrate the accuracy and efficiency of the half-space

GSP method. In section 4 we apply our method to regional wave propagation in different

types of complex crustal waveguides including those with small-scale random heterogeneities

and random rough interfaces of sedimentary layers. The influence of these heterogeneities

and rough interfaces on Lg amplitude attenuation and Lg coda formation are shown to be

significant. Section 5 focuses on the slowness domain analysis. Although investigating wave

propagation in space-time domain is more straightforward, slowness domain analysis pro-

vides a clearer picture of energy propagating directions as well as better criteria for energy

partitioning. Conclusion and discussions are given in the final section.

2 Theory

First we derive the wide-angle screen formula for the 2D SH-wave one-way propagation in

an elastic half space. The equation of motion in a linear, heterogeneous elastic medium can

be written as (Aki and Richards, 1980)

-w 2p(r)u(r) = V a(r) (1)

where w is the frequency, r = (x, z) is a 2D position vector, u is the displacement vector, u is

the stress tensor (dyadic) and p is the density of the medium. Here we assume no body force

exists in the medium. For an isotropic 2D elastic medium, the SH and the P-SV waves are

4



decoupled. In this article we will treat only the SH problem to demonstrate the applicability

of screen propagators to crustal waveguide problems.

2.1 General wide-angle formulation

For a 2D SH problem, only the y-component of the displacement field exists and the diver-

gence of the stress tensor can be simplified into

V.u(r) V.(upVu)
0 0 0 0-x[p(r) ± ] + a [p(r) a-u] (2)

where u = uy, V is the 2D gradient operator, and p is the shear rigidity. We decompose the

parameters of the elastic medium and the total wave field into

P = Po+SP

Az = Po + J1z

u = u ±+U (3)

where Po and po are the parameters of the background medium, 6p and 61- are the corre-

sponding perturbations, u° is the primary field and U is the scattered field. Then the SH

wave equation can be rewritten as

,LoV 2u + w2pou = -[w 26pu + V. 61JVu], (4)

or

(V 2 + k2 )u(r) = -k 2F(r)u(r), (5)

where k = w/v is the wavenumber in the background medium and v is the background S

wave velocity defined by

V = Ilo/Po (6)

In the right hand side of (5), F(r) is a perturbation operator

F(r) -- Ep(r) + 1 V - AV, (7)
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with

6p(r) 6p(r) (8)
P0

E,.(r) 6=(r) (9)

Equation (5) is a scalar Helmholtz equation. With a half-space scalar Green's function

gh, the scattered field U can be written as

U(ri) = k2 fv d2rgh(ri; r)F(r)u(r), (10)

where the 2D volume integration is over the volume V including all the heterogeneities in

the modeling space. Using the Gauss divergence theorem the above equation reduces to (cf.

Wu, 1994)

U(ri) k2 j d2r {gh(ri; r)Ep(r)u(r)

1 Vgh(ri; r). E,(r)Vu(r)} (11)
T2I

Under the forward-scattering approximation, or more generally the multiple-forescattering-

single-backscattering (MFSB) approximation (De Wolf, 1971, 1985; Wu and Huang, 1995;

Wu, 1996), the total field and Green's function under the integration in the above equation

can be replaced by their forward-scattering approximated counterparts, and the field can

be calculated by a one-way marching algorithm along the x-direction using a dual domain

technique. We will derive in the following the dual domain expressions of the marching

algorithm for the heterogeneous half-space case.

For each step of the marching algorithm under the forward-scattering approximation, the

total field at x, is calculated as the sum of the primary field which is the field free-propagated

in the half-space from x' to xj, and the scattered field caused by the heterogeneities in the

thin-slab between x' and xj. The thickness of the slab should be made thin enough to ensure

the validity of the local Born approximation. Under this condition, the Green's function

can be approximated by the homogeneous half-space Green's function. The latter can be

obtained by the image method (Morse and Feshbach, 1953). The stress should vanish at the
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free surface z = 0, leading to it9u/az = 0, a Neumann boundary condition. Therefore, we

have

go'(rl; r) = go(r 1 ; r) + go(r 1 ; r*) (12)

where go is the infinite homogeneous Green's function and r* is the mirror point of r with

respect to the free surface.

Taking the Fourier transform of Eq. (11) along z1, for the case of a thin-slab we have

U(xIK) k2 dx dzfg'(xi, K_; x, z)p(x, z)uo(x, z)

1Vgh(x1, K,; x, z) .E,,(x, z) Vu(x, z)} (13)

We know the free space Green's function in wavenumber domain (Wu and Huang, 1995; Wu,

1996)
go (Xi, Kz; x, z) =-- e •xlxe-'z (14)

2-ý

with
,y = Vkk2 - Ký2, (15)

Therefore,

gho'(xi, Kz; x, z) =go (xi,Kz; x, z) + go (xi, Kz;x, -z)

_ ei-y(xx)[e-iKzz +iKgzz]
2-y

- eiY(xl-x)2cos(Kzz) (16)2-y

In a similar way we can obtain

Vgo(xi, Kz; x, z) = -(•yx + Kzz)eiT(xl-x)e-iKzz (17)
2-y

and
0 h-+ 0 h-'

Vgo' = •0go• + •o90
= 2 e1Y(x1-x){2cos(Kzz) - ý,(K/-y)2isin(Kzz)} (18)

where . and , are unit vectors in the x and z directions, respectively.
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Substitute g h and Vgh into (13), leading to

U (xK;) U(x1, g-,) + U,, fx x (x 1, ],:k
U1(XKK) * x dxe, xlx 00 dz 2 cos(Kz) kep(xz)uo(xz)

V1(xiK ) = i

Utl(X, Kz) -ik X dxe'-Y(xl -x)
2 11

fo00 dz[2 cos(Kzz)O8huo - 2i sin(Kzz) Kz 0-vuo]E,(x, z) (19)

where

1o
ik ox
10c

& ik ioz (20)

are dimensionless partial derivatives. Or we can write these equations as

U•(x 1, K•) = 1- 2 k• (21)
UP(X' Kz) = ' f dxei "( •- )C[Te (Z)Uo(Z)] (1

U.(x,) -i xi dxeiY(XX) ) o(z)] iis[-K (Z)-zuo(z)}1 (22)
2 gJx' d iY

where C[f(z)] and S[f(z)] are cosine and sine transforms, defined by

C[f(z)] = dz2cos(Kzz)f(z)

S[f(z)] = dz2sin(Kzz)f(z) (23)

for forward transforms, and

C1[f (K1)] = fc dKz2cos(Kzz)f(Kz)

= f Sdg2sin(Kzz)f(Kz) (24)

for inverse transforms.

In Eqs. (21) and (22), uo, •xuo and Ozuo can be calculated by

u0 (X, z) = f dK.z eiKz eiY'(x-x') uo(x, K)Uo( , Z - 2,7r _-oo

= C-l[e"Y'(x-x')uo(x', Kg)] (25)
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and

-uo(X(-z) = C[e x')o(xI, K..)]
k

0ýu 0(x, z) = iS-'[eiY-'(X-X')L.&uo(x', Ks)] (26)
k

Eqs. (21), (22), (25) and (26) are the dual-domain expressions of the wide-angle screen

propagator for half-space SH problems.

2.2 Implementation procedure for the half-space wide-angle screen

propagator

Under the forward-scattering approximation we can update the total field with a marching

algorithm in the forward direction. The half-space model can be sliced into thin-slabs per-

pendicular to the propagation direction. Weak scattering condition holds for each thin-slab.

For each slab-step forward, the forward-scattered field by the thin-slab is calculated and

added to the primary field so that the updated field becomes the incident field for the next

thin-slab. The procedure can be summarized as follows.

1. Cosine transform the incident fields at the entrance of each thin-slab into wavenumber

domain.

2. Free propagate in wavenumber domain and calculate the primary field and its gradient

within the slab.

3. At each horizontal position within the slab, inverse cosine/sine transform the primary

field and its gradients into space domain (25 and 26), and then interact with the medium

perturbations 6P and 6,.

4. Cosine/sine transform the distorted fields into wavenumber domain and perform the

divergence operations to get the scattered fields (21 and 22).

5. Calculate the primary field at the slab exit and add to the scattered field to form the

total field as the incident field at the entrance of the next thin-slab.

6. Continue the procedure iteratively.
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2.3 Small angle approximation and the phase-screen propagator

When the energy of crustal guided waves is carried mainly by small-angle waves (with respect

to the horizontal direction), the small angle approximations can be invoked to simplify the

theory and calculations. Let us first consider the calculations for U,. Substitute (26) into

(22), resulting in

U,(x1, Kz) ik X1 dxei-f(xj-X) 1 0 dK,- ei7'(x•x) jo dz2 11 27r fof

{ 2 cos(K~z)E,,(z)2cos(K'z)( y )

+ 2sin(Kzz)Ej(z)2sin(Kzz) )( ) uo(x',Kz) (27)

This is the local Born scattering in wavenumber domain. The above equation can be written

as

U. (xl, Kz) = A~uo(x', Kz) (28)

where AM is an operator. In the discrete form, it is a matrix, whose elements are incident

and outgoing (scattered) wavenumbers dependent. For small-angle waves, K, << - p 7' ; k.

The second term of Eq. (27) is a second order small quantity compared with the first term,

and therefore can be neglected in this case. Then we have

U(xl,Kz) = Up(xl,Kz) + U.(xl,Kz)
ik 1'(-' l7 cofo°z

=--- - X-e ) 1 cc dKz2 cos(K'zz) dz2cos(Kz)
2 27r f

dxe~~'xx'[(kEPWz - (1)6A(z)1 uo(x', Kz)
X I ,., k

Sikei"'@(X1-')C IS., (Z)u (x'W, Z)]1(9
Sz)] (29)

where
X1r

S8 (z) 2 -/, dx[Ep (x, z) - E,(x, z)]

SAxEs(z) (30)

where p8(z) is the average S-wave slowness perturbation over the thin-slab at depth z,

Es (z) = 1-fxl dxs with s(x, z) = 1 Ax = (xi - x') is the thin-slab thick-

ness. Here S, is the corresponding slowness screen for the half-space thin-slab. Eq. (29)

10



is the screen approximation of the half-space SH problem. Summing up the primary and

scattered fields and invoking the Rytov transform result in the dual-domain expression of

phase-screen propagator for this case

u(xi, K.) = uo(x, K.-) ± U(xi, K,)

= eir(xl -x') f dz2 cos(Kzz)[1 + ikS,(z)]uo(x', z)

_ e, y(xl -X')c lekýzu "z)] (1

where eikSs(z) is the phase delay operator.

2.4 Implementation procedure for the half space phase-screen

propagator

Under the phase-screen approximation, the heterogeneous half-space is represented by a

series of half-screens embedded in the homogeneous background half-space. The wave prop-

agates between screens in the wavenumber domain and interacts with the phase-screens in

the space domain. The interaction is only a phase-delay operator (multiplication in space

domain). The procedure can be summarized as follows.

1. Cosine transform the incident field at the starting plane into wavenumber domain and

free propagate to the screen.

2. Inverse cosine transform the incident field into space domain and interact with the

shear slowness screen (phase-screen) to get the transmitted field.

3. Cosine transform the transmitted field into wavenumber domain and free-propagate

to the next screen.

4. Repeat the propagation and interaction screen-by-screen to the boundary of the model

space.

2.5 Treatment of the Moho discontinuity

The Moho discontinuity can be treated in two ways. One is to put the impedance boundary

conditions in the formulation, the other is to treat the parameter changes as perturbations
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Figure 1: Comparison of synthetic seismograms along the surface calculated by the screen

method (thick lines) and reflectivity method (thin lines) for a flat crustal model (32 km

thick). The source function is a Ricker wavelet with dominant frequency of 1.0 Hz.

and therefore be incorporated into the screen interaction. The former has the advantage of

computational efficiency. The latter has the flexibility of handling irregular interfaces. In

this paper, we adopt the latter approach and check the validity of perturbation approach for

the Moho discontinuity by a finite-difference algorithm.
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3 Numerical verification and tests

To test the validity of the half-space GSP method (or simply call it the screen method), we

have conducted extensive numerical tests and checked the results with various well known

numerical methods, such as the wavenumber integration and finite-difference methods.

First, in Figure 1 we show the accuracy of the method by comparing the synthetic seis-

mograms generated by the screen method (thick lines) with those calculated by a reflectivity

method (thin lines) for a flat crustal model. The crust has a thickness of 32 km and a

shear wave velocity of 3.5 km/s. The mantle beneath the crust has a shear velocity of 4.5

km/s. The source function is a Ricker wavelet with a dominant frequency of 1.0 Hz. Our

results agree very well with the reflectivity method which is considered very accurate for flat

layered media. The only exceptions are for near vertical reflections at very small epicentral

distances where the screen method has low accuracy for extremely large scattering angles

with respect to the propagation direction. However, since regional seismograms are usually

recorded at large distances, this limitation does not pose any real problem for its application.

Next, we show the accuracy of the method by comparing synthetic seismograms generated

by this method with those generated by a finite-difference algorithm (Xie and Lay, 1994).

For the finite-difference method, a fourth-order elastic SH-wave code is used to calculate

the synthetic seismograms. The spatial sampling interval is 0.125 km in both vertical and

horizontal directions, and the time interval is 0.015 second. For the screen method, the

spatial sampling interval is 0.25 km in the vertical direction and the screen interval is 1.0

km. A Gaussian derivative is used as the source time function for both methods. Because of

the computational intensity of the finite-difference method, we did the comparison at short

propagation distances (250 km) and a relatively low frequency (fo - 0.5 Hz). Figure 2

gives the comparison between synthetic seismograms from the screen method and from the

finite-difference method for the same flat layered model. Their agreement is excellent.

Next we show the comparison for a heterogeneous crustal model. On the top of Figure 3 is

the crust model with a narrow passage ('neck' type) used to calculate synthetic seismograms.

On the bottom are the synthetic seismograms along a vertical profile at an epicentral distance

13



Horizontal Distance (km)
50 100 150 200 250

20 ... .........................

40-

Ci)
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E
*1-°

60-
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80........ .... .................

SP(thick solid line) compared with FD(thin line)

Figure 2: Comparison of synthetic seismograms along the surface calculated by the screen

method (thick lines) and the fourth-order finite-difference method (thin lines) for a flat

crustal model (32 km thick). The source function is a Gaussian derivative (fo - 0.5 Hz).
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sor2 k-n)
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THINNING CRUSTAL MODEL

Vertical Distance (km)
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E 80-. ...............................................

1=0

SP(thick solid line) & FD(thin line) for inhomogeneous model

Figure 3: Comparison of synthetic seismograms along a vertical profile at the distance of

250 km calculated by the screen method (thick lines) and a finite-difference method (thin

lines) for a laterally varying crustal model shown on the top panel.
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of 250 km. The thin lines are from the finite-difference method and the thick lines are from

the screen method. The source is located at a depth of 2 km. Excellent agreement can be

seen. For this example, the GSP method took 20 CPU minutes on a SPARC-4. To obtain

a similar accuracy, the finite-difference calculation took 3000 CPU minutes on a SPARC-20.

The speed factor is about 300.

We have performed an accuracy comparison between the screen method and finite-

difference method for different grid spacings. It was found that when the grid spacing

for the finite-difference method is 0.25 km, although it still satisfies the stability criterion

for the finite-difference method, there are considerable discrepancies between the results of

the two methods (see the figure in Wu et al., 1997). This is due to the numerical disper-

sion of the finite-difference method. With a finer grid spacing of 0.125 km, the results from

finite-difference converged to those of the GSP method. This shows that for wave propaga-

tion through a long crustal waveguide, the finite-difference method requires finer grid than

the conventional stability criterion. The grid spacing (Az) of the screen method for the

comparison is 0.5 km, and the screen interval (Ax) is 1 km.

4 Investigating Lg-wave propagation in complex crustal

structures

In this section we show some examples demonstrating the potential of the method applied

to various problems of regional wave propagation.

4.1 Long range Lg propagation simulation in complex crustal waveg-

uides

Visualize the path effects by snap shots. The high efficiency of the method permits

the simulation of Lg wave propagation through long crustal wave guides. The snap-shots

can be easily generated to visually analyze the path effects of Lg wave propagation. Figures

4, 5 and 6 show the snap shots calculated by the screen method for different waveguides
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Comparison of Wave Propagation
in Various Crustal Waveguides

(t =30sec)

Figure 4: Snap shots at 30 sec. The developmnent of ma~ntle waves and heaed waves can be

seen clearly.
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Comparison of Uaue Propagation
in Various Crustal Uauc Guides

t t = 50 sec)
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-. -..... ....... ,. . . , .: -

Figure 5: Snap shots at 50 sec. The development of mantle waves and head waves, and the

influence of crust thining and thickening can be seen clearly.
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at 30, 50 and 70 sec., respectively. In each figure, from top to bottom are results for fiat,

narrowing and broadening crustal waveguides respectively. The source is located on the left

boundary at a depth of 2 km. The development of mantle wave and head wave, as well as

the formation of crustal guided waves as multiple reflections between free surface and Moho

discontinuity can be clearly seen. For the inhomogeneous models, wave diffraction, leakage

to the mantle, wavefront distortion and increase of wavefield complexity can also be seen

clearly. From the comparison it is seen that the passage of a narrow crustal waveguide ('neck'

type) has greater effect on Lg leakage than the broad passage ('belly' type). In the latter

case although the wavefronts are complicated due to scattering at the edges, there is more

energy trapped in the crust than the case of narrow passage in which a large percentage of

energy leaks into the mantle. This example demonstrates the potential of the method as a

tool for investigating the path effects of different crustal structures.

Long-range high-frequency synthetic seismograms. The following example shows

the capability of this method for long range high-frequency synthetic seismograms in a lat-

erally varying structure. Figure 7 shows the laterally varying crust model used in the calcu-

lation. Figure 8 shows the high-frequency synthetic seismograms on the surface at distances

up to 1000 km. The center frequency fc - 5 Hz with the maximum frequency fmax = 10

Hz. In comparison, the low-frequency (fc - 1 Hz, Imax - 2 Hz) synthetic seismograms are

shown in Figure 9. It is clear that without high-frequency content, many of the distinctive

features associated with Lg measurements can not be adequately modeled. In other words,

a proper simulation method with the capability to generate accurate high-frequency signals

is a necessity for the purpose of investigating regional phases.

4.2 The influences of random heterogeneities and rough interfaces

The importance of small-scale random heterogeneities to seismic wave propagation is well

known. There are extensive publications on this subject in seismology. However, the role

of random heterogeneities in Lg excitation, propagation, attenuation and blockage, is still

unclear due to the complexity of the problem. The theory of wave propagation in unbounded
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Parameters of Crustal Model

Layer Vs(kmlsec) Density(g/cm) Thickness(km)

1 3.00 2.60 1.00

2 3.46 2.80 14.00
3 3.76 3.00 22.00
4 4.65 3.30 Half-Space

71000(km)

1.0, sediment layer

(so rce)
Vs2 p2

15

Vs3 p3

29

37
Half-Space

Crustal Model

Figure 7: An inhomogeneous crustal model used in the calculation of high-frequency syn-

thetic seismograms. Shown in the upper panel are model parameters and the lower panel

gives the geometry of the model. The receivers are on the surface and shown by triangles.
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I Wili

Figure 8: High-frequency 1f Hz, f 2x=1 Hz) synthetic seismograms on the surface a

atdistances up to 1000 km for an inhomnogeneous crustal waveguide
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random media has been well developed. However, for waves in complex crustal waveguides

with random heterogeneities, the theoretical difficulties are overwhelming, and no analytical

tools are available for performing realistic calculations. Numerical simulation is an attrac-

tive alternative to the theory. Some finite-difference simulations have been conducted (e.g.

Frankel and Clayton, 1986; Frankel, 1989; Xie and Lay, 1994; Jih, 1996). Limited by the

computation power, however, the finite-difference results are often for short distances or

low frequencies. Liu and Wu (1994) have done some numerical simulation using the phase-

screen method, but the media simulated are limited to unbounded media. The development

of the half-space GSP method, enables us to simulate high-frequency waves propagating in

complex crustal waveguides to long distances. In the following, we will show two examples

demonstrating the capability of the method.

Figure 10 shows a heterogeneous crustal model representing a 'mountain root' with small-

scale random heterogeneities. On the top panel is the velocity model, and the comparisons

between synthetic seismograms with and without random heterogeneities are shown on the

middle and bottom panels, respectively. The heterogeneities have an exponential correlation

function, with the scale length a. = a, = 1.6 km (in horizontal and vertical directions,

respectively). The RMS velocity perturbation is 5%. The dominant frequency of the source

function is 2 Hz. Figures 11 A and B show the comparison between snapshots for waves

passing through the 'mountain root' with and without random heterogeneities, respectively.

We see that random heterogeneities drastically increase the leakage of waves to the mantle

and the complexity of the waveforms. Extensive numerical experiments will be conducted to

study the different influences of various kinds of random heterogeneities. It has been shown

that the crustal random heterogeneities are highly anisotropic in scale length (Levander and

Holliger, 1992; Holliger and Levander, 1992; Wu et al., 1994). The influences of the random

heterogeneities with different stochastic characteristics will be explored systematically.

Figure 12 shows the comparison of synthetic seismograms and snapshots for models with

and without a rough interface. Shown on the first panel is a crustal model with a 1 km thick

low-velocity top layer. The bottom of the low-velocity layer is a rough interface with 0.2 km

RMS random depth fluctuations. The randomness has an exponential correlation function
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Time(s)

Seismogram with random media

C.> )

Time(s)

Seismogram without random media

Figure 10: A heterogeneous crustal model representing a mountain root with small-scale ran-

dom heterogeneities (top panel). The comparison between synthetic seismograms with and

without random heterogeneities are shown on the middle and bottom panels, respectively.
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Snapshot at T=80s
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Snapshot at T=100s

A. Snapshot for waves passing a mountain root without random heterogeneities

Distance(km)
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Snapshot at T=80s
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"ci V••'% :

a) 50.

Snapshot at T=1 00s

B. Snapshot for waves passing a mountain root with random heterogeneities

Figure 11: Comparison between snapshots for waves passing through a 'mountain root' with

or without random heterogeneities, shown on A and B, respectively.
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and a horizontal scale length of 0.5km. The second and third panels show the comparison

of synthetic seismograms; the bottom two panels show the comparison of snapshots. We

see that rough interfaces of sedimentary layers can also increase the mantle leakage and

waveform complexity of regional waves.

5 Energy transfer and partitioning

While the wave-field snapshots discussed previously are very intuitive for assessing general

feature of Lg-wave propagation, it is rather difficult, in a complex model, to investigate the

energy transport by directly analyzing waveforms and snapshots. In this section, we will

focus our investigation on wave energy transfer and partitioning in heterogeneous crustal

waveguides.

The upper boundary of the crustal wave guide is the free surface, which is a perfect

reflector. The lower boundary of the wave guide is the Moho discontinuity. For waves

incident on the Moho discontinuity, part of the energy will leak into the upper mantle.

However, for waves incident on the Moho with post-critical angles, total reflections occur

and all the energy is reflected and trapped in the waveguide. Generally speaking, the guided

energy
E, f~zK uK)1dK, (32)

where K, is the critical wavenumber. Scattering processes can redistribute the energy in

wavenumber domain, causing the trapped energy leak to the upper mantle. Therefore in-

vestigating energy distribution versus the propagation angle, or equivalently their vertical

slowness, can give a clear picture of which part of the energy can be trapped in the wave

guide and which part of the energy will leak into the upper mantle. We will use a set of

numerical examples and slowness analysis to investigate the interactions between Lg-waves

and different types of wave guides.
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mom
Crust model with rough interface

-Time(s)

Seismogram without rough interface

-E

C=10

Time(s)

Seismogram with rough interface

Distance(km)
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Snapshot at T=80s without rough interface

Distance(km)
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0/ il

Snapshot at T=80s with rough interface

Figure 12: Influence of a rough interface on Lg propagation. The top panel is a crustal

model with a sedimentary layer for which the bottom is a rough interface. The second and

third panels show the comparison of synthetic seismograms; the bottom two panels show the

comparison of snapshots.
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50

Simple crustal waveguide model
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Angular Spectrum for crustal waveguldes at f=[0.6,1.9]

Distance (km)
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Energy attenuation versus distance

Figure 13: Energy distribution for a uniform crust model. From top to bottom, crustal

structure; energy distribution versus vertical slowness and distance; and energy attenuation

versus distance.
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0
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Angular Spectrum for crustal waveguides at f=2.OHz

Distance (km)
100 200 300 400 500 600

C-)

Angular Spectrum for crustal waveguides at f=1.5Hz

Distance (kin)
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0
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Angular Spectrum for crustal waveguides at f=1.0Hz

Distance (km)
100 200 300 400 500 600

0

C)

Angular Spectrum for crustal waveguides at f=0.5Hz

Figure 14: Energy distribution of a uniform crust model versus vertical slowness and distance

for different frequencies. From top to bottom, the frequencies are 2.0, 1.5, 1.0 and 0.5 Hz

respectively.
29



5.1 Deterministic waveguide models

Figure 13 shows the result for a simple waveguide. The model is composed of a 30 km

thick, horizontal, constant velocity crust over a constant velocity upper mantle. The S-wave

velocities and densities are VI= 3.5 km/s, pl= 2.7 g/cm3 and V2= 4.5 km/s, P2= 3.3 g/cm 3

for the crust and upper mantle respectively. Hereafter, we will refer to this model as the

reference model. Shown in the upper panel of Figure 13 is the waveguide structure. In

the middle is the energy distribution versus the vertical slowness and distance up to 600

km. The vertical coordinate is the normalized vertical slowness Kl/k, corresponding to the

cosine of incident angles. Note that zero vertical slowness means horizontal propagation.

The frequency range is from 0.6 to 1.9 Hz. At the initial stage, there is considerable energy

with large vertical slowness, i.e., with steep angles. After multiple reflections, energy with

larger vertical slowness is depleted due to the leakage to the mantle, leaving the energy with

small vertical slowness, i.e., the guided waves, propagating in the waveguide. Shown in the

lower panel is the wave energy versus the distance. The energy is calculated from synthetic

seismograms on the free surface. It can be compared with the observed Lg waves from

seismic networks. After the first 100 km, the energy is basically constant. Note that this

result is for a two-dimensional range independent waveguide without intrinsic or scattering

attenuation. For a real 3D model, the geometrical spreading factor should be different from

here. Figure 14 shows the energy distribution versus the vertical slowness and distance for

the reference model for individual frequency components. From top to bottom are plots

for frequencies 2.0, 1.5, 1.0 and 0.5 Hz, respectively. The energy distribution shows some

patterns in the slowness-distance domain. These result from the interference of waves from

the source as well as from the free surface and bottom reflections. After a certain distance,

the patterns are relatively stable, that is, certain modes have formed in the waveguide and

they carry the energy to a long distance. Later we will see the waveguide structures, in

both vertical and horizontal directions, can affect the propagating mode, i.e., the patterns

of energy distributions.

The second example, shown in Figure 15, is similar to the first one except there is a crust
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Energy attenuation versus distance (line-necking)

Figure 15: Energy distribution for model with a crustal necking. From top to bottom, crustal

structure; energy distribution versus vertical slowness and distance; energy attenuation ver-

sus distance.
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Figure 16: Energy distribution for model with a crustal thickening. From top to bottom,

crustal structure; energy distribution versus vertical slowness and distance; and energy at-

tenuation versus distance.
32



necking in the waveguide where the crust thickness decreased from 30 km to 20 km. The

middle panel shows, at the entrance of the necking crust, part of the energy is deflected from

its original direction and no longer meets the total reflection condition. This energy finally

leaks into the upper mantle and cause attenuation of Lg energy. This can also be seen from

the energy attenuation curve in the bottom panel. The model in Figure 16 has a crustal

thickening. Again, at the place where the crust thickness decreases (as the wave leaves the

exit of the belly), part of the energy is deflected from its original direction and leaked into

the upper mantle.

5.2 Waveguide models with random structures

In addition to the large scale, deterministic structures discussed in the above examples,

small scale heterogeneities also widely exist in the crust and upper mantle. These small

scale structures can be simulated by random velocity fluctuations on a background velocity

and by random interface undulations. The following models will be used to test how these

small scale structures affect Lg energy transport. Before applying the screen propagator

method to a random velocity model, we first check the validity of the screen method by

comparing its result with that from a finite-difference method. The upper panel of Figure 17

gives a crust model with 5% RMS velocity perturbation. To shorten the computation time,

here we use a 16 km thin crust model. The lower panel shows the comparison of relative

attenuation curves between the two methods. The solid line is from a fourth-order finite-

difference method and the dotted line is from screen propagator method. The two results

give reasonably consistent results. This proves the validity of the screen propagator applied

to the energy transfer and partition in random crustal waveguides. For this test model, the

FD calculation has Ax = Az = 0.125km, At = 0.015 sec. resulting in a CPU time of 58

hours on a SUN SPARC-4 work station, while the screen method has Ax = Az = 0.25km,

At = 0.1 sec., and a CPU time 0.5 hour on the same machine. Both calculations have fo = 1

Hz. For the screen method, the cutoff frequency fmax = 2 Hz.

Shown in Figure 18 is a normal crustal waveguide similar to the reference model except
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Comparison of energy attenuation between FD(solid line) and GSP(dotted line)

Figure 17: Comparison of energy attenuation curves calculated by screen propagator method

and finite-difference method. Shown in the top panel is the velocity structure including

random heterogeneities and in the lower panel are the energy attenuation curves.
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there is a 5% RMS random velocity perturbation in the crust. The fluctuation has an

exponential power spectrum with horizontal and vertical characteristic scales of 5.0 and 3.0

km, respectively. Compared with Figure 13, energy continuously deflects from lower vertical

slowness to higher vertical slowness due to the scattering by small scale heterogeneities.

This can be seen by comparing the middle panel of Figure 18 with that of Figure 13. In

Figure 18 there is more energy seen above the critical wavenumber. The energy with larger

vertical slowness tends to leak into the upper mantle and cause additional Lg-wave energy

attenuation as can be seen in the lower panel, where the dotted line is for the reference

model and solid line is for the random model. Figure 19 is the energy distribution versus

slowness and distance for individual frequency components. Comparing with those in Figure

14 for the reference model, we can see that many interference patterns for guided modes are

destroyed. This is especially clear for higher frequency components. This phenomenon is

also related to the characteristic scale (or equivalently, the spatial power spectrum) of the

random heterogeneities. Figure 20 gives the attenuation curves for different characteristic

scales. The upper panel is the relative total energy, which is the energy contained in the

whole seismogram recorded on the surface versus distance. The solid line is for ka = 1, the

dotted line is for ka = 10, and the dash line is for the reference model. We see that for

the reference model, the total energy remains basically constant beyond critical distance,

which serves as a checking point for the numerical simulations. The lower panel gives the

logarithmic relative RMS Lg wave amplitudes, which are calculated within the Lg window,

versus distance. Again, the solid, dash and dotted lines are for ka = 1, ka = 10 and the

reference model. In both measurements ka = 1 lines give stronger attenuation than ka = 10

lines. We see also that the Lg amplitudes attenuate more rapidly than the total energy. This

is due to the effect of scattering, which diffuses the waves out of the Lg window.

The existence of rough surface and interfaces has effects on both excitation and propa-

gation of Lg-waves. First, the rough surface near the source region may affect the source

energy partitioning. Second, along the entire propagation path, the trapped energy in the

waveguide may be redirected to steeper angles due to scattering, causing it to leak into the

upper mantle. This can cause additional Lg-wave attenuation. Similar to the example shown
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Figure 18: Energy distribution for a crust model with 5% RMS velocity perturbations. From

top to bottom, crustal structure; energy distribution versus vertical slowness and distance;

energy attenuation versus distance.
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Figure 19: Energy distribution for a crust model with 5% RMS velocity perturbations versus

vertical slowness and distance for different frequencies. From top to bottom, the frequencies

are 2.0, 1.5, 1.0 and 0.5 Hz respectively.
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Figure 20: Attenuation curves for different characteristic scales. The upper panel is the

relative energy attenuation, and the lower panel is the logarithmic relative RMS Lg wave

amplitude attenuation. The solid line is for ka = 1, the dotted line is for ka = 10, and the

dash line is for the reference model. 38



in the last section, we use a low velocity layer with a rough lower interface to simulate the

effect of a rough surface. In Figure 21, the upper panel is the velocity structure including

a surface sedimentary layer with a random interface. The sedimentarylayer has an average

thickness of 1 km and a RMS depth perturbation of 0.2 km with correlation length of 1 km.

The middle panel is the energy distribution versus distance and vertical slowness. Compared

with Figure 13 for the reference model, it clearly shows, with the existence of a rough inter-

face, considerable energy moves from lower vertical slowness to higher vertical slowness. In

other words, the energy propagation directions are deflected from near horizontal to steeper

directions, which makes more energy leak into the upper mantle and causes extra Lg wave

attenuation. The lower panel gives the energy attenuation curves versus distance, in which

the solid line is for the model with rough interface and the dotted line is for the reference

model. It shows clearly the effect of rough interface on Lg attenuation.

6 Conclusion

The advantages of the half-space GSP method can be summarized as follows.

e Fast speed: For medium size 2D Lg problems, it is 2-3 orders of magnitude faster

than the FD methods. For large distance, high frequency 3D problems, the time saving

factor could be much greater.

* Memory saving: The GSP needs only to store 2D data arrays for each step instead

of 3D volume data, leading to huge memory savings.

e Stability: The transversal Laplacian is calculated by the Fourier method, therefore

no numerical dispersion occurs for high frequency waves.

* Intrinsic attenuation: Being a frequency domain method, it is easy to incorporate

various Q models into the simulation. Therefore, the method can study the effects of

scattering and anelasticity on Lg wave blockage and attenuation.
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Figure 21: Energy distribution for a crustal waveguide model with rough interface. From

top to bottom, crustal structure; energy distribution versus vertical slowness and distance;

and energy attenuation versus distance.
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* Random heterogeneities and rough interfaces: Random heterogeneities and

rough interfaces can also be easily incorporated into the model. The effects of small

scale heterogeneities and rough interfaces, and their statistical characteristics can be

studied by numerical simulations using this method.

The use of half-space phase-screen propagator has made seismogram synthesis at regional

distances very efficient. Rapid changes of crustal structure and small scale heterogeneities

and rough interfaces in the crust can be easily handled. The results in this paper demon-

strates the advantages and feasibility of the approach. P-SV and full 3D problems will be

treated in future work.
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